很遗憾,因您的浏览器版本过低导致无法获得最佳浏览体验,推荐下载安装谷歌浏览器!

液氦

留言咨询 更多信息
分享:
上一条: 液氩

摘要

​液氦在低温度下气态氦转变为液态氦。由于氦原子间的相互作用(范德华力)和原子质量都很小,很难液化,更难凝固。富同位素4He的气液相变曲线的临界温度和临界压强分别

产品介绍

液氦

 液氦  

液氦

在极低温度下气态氦转变为液态氦。由于氦原子间的相互作用(范德华力)和原子质量都很小,很难液化,更难凝固。富同位素4He的气液相变曲线的临界温度和临界压强分别为5.20K和2.26大气压,一个大气压下的温度为4.215K.在常压下,温度从临界温度下降至绝对零度时,氦始终保持为液态,不会凝固,只有在大于25大气压时才出现固态。

物理性质

   

  液氦 

液氦

概述

  氦在通常情况下为无色、无味的气体;熔点-272.2°C(25个大气压),沸点-268.785°C;密度0.1785克/升,临界温度-267.8°C,临界压力2.26大气压;水中溶解度8.61厘米³/千克水。氦是唯一不能在标准大气压下固化的物质。液态氦在温度下降至2.18K时(HeⅡ),性质发生突变,成为一种超流体,能沿容器壁向上流动,热传导性为铜的800倍,并变成超导体;其比热容、表面张力、压缩性都是反常的。 

  氦有两种天然同位素:氦3、氦4,自然界中存在的氦基本上全是氦4。 

  普通液氦是一种很易流动的无色液体,其表面张力极小,折射率和气体差不多,因而不易看到它。液态4He包括性质不同的两个相,分别称为HeⅠ和HeⅡ,在两个相之间的转变温度处,液氦的密度、电容率和比热容均呈现反常的增大。两个液相HeⅠ和HeⅡ间的转变温度称为λ点,饱和蒸气压下的λ点为2.172K,压强增加时,λ点移向较低的温度,两个液相的相变曲线为一直线,称为λ线。 

超流体

  液氦具有一系列引人注目的特点,主要表现在以下几方面。 

  超流动性普通液体的粘滞度随温度的下降而增高,与此不同,HeⅠ的粘滞度在温度下降到2.6K左右时,几乎与温度无关,其数值约为3×10-6帕秒,比普通液体的粘滞度小得多。在2.6K以下,HeⅠ的粘滞度随温度的降低而迅速下降。HeⅡ的粘滞度在λ点以下的温度时立刻降至非常小的值(<10-12帕秒),这种几乎没有粘滞性的特性称为超流动性。用粗细不同的毛细管做实验时,发现流管愈细,超流动性就愈明显,在直径小于10-5厘米的流管中,流速与压强差和流管长度几乎无关,而仅取决于温度,流动时不损耗动能。 

  氦膜任何与HeⅡ接触的器壁上覆盖一层液膜,液膜中只包含无粘滞性的超流体成分,称为氦膜。氦膜的存在使液氦能沿器壁向尽可能低的位置移动。将空的烧杯部分地浸于HeⅡ中时,烧杯外的液氦将沿烧杯外壁爬上杯口,并进入杯内,直至杯内和杯外液面持平。反之,将盛有液氦的烧杯提出液氦面时,杯内液氦将沿器壁不断转移到杯外并滴下。液氦的这种转移的速率与液面高度差、路程长短和障壁高度无关。 

  对HeⅡ性质的理论研究首先由F.伦敦作出。4He原子是自旋为整数的玻色子,伦敦把HeⅡ看成是由玻色子组成的玻色气体,遵守玻色统计规律,玻色统计允许不同粒子处于同一量子态中。伦敦证明了存在一个临界温度Tc,当温度低于Tc时,一些粒子会同时处于零点振动能状态(即基态),称为凝聚,温度愈低,凝聚到零点振动能状态的粒子数就愈多,在绝对零度时,全部粒子都凝聚到零点振动能状态,以上现象称为玻色-爱因斯坦凝聚。L.蒂萨认为HeⅡ的超流动性起因于玻色-爱因斯坦凝聚。由于已凝聚到基态的HeⅡ原子具有最低的零点振动能,故有极大的平均自由程,能够几乎无阻碍地通过极细的毛细管。蒂萨首先提出二流体型,后来L.D.朗道修正和补充了此模型。二流体模型认为HeⅡ由两部分独立的、可互相渗透的流体组成,一种是处于基态的凝聚部分,熵等于零,无粘滞性,是超流体;另一种是处于激发态(未凝聚)的正常流体,熵不等于零,有粘滞性。两种流体的密度之和等于HeⅡ的总密度,温度降至λ点时,正常流体开始部分地转变为超流体,温度愈低,超流体的密度愈大,而正常流体的密度则愈小,在绝对零度时,所有原子都处于凝聚状态,全部流体均为超流体。利用这个二流体模型可解释关于液氦的许多力学和热学性质。 

热传导性

  HeⅠ具有普通流体的导热率,因而当减小压强时,液氦出现激烈的沸腾现象。HeⅡ的导热率要比HeⅠ高出106倍,比铜高出104倍。当温度越过λ点,HeⅠ转变为HeⅡ时,液氦从很坏的热导体突然变为到目前为止最好的热导体。由于HeⅡ的导热率异乎寻常地高,其内部不可能出现温差,因而内部不可能汽化,即不能沸腾。当利用抽气方法减低蒸气压时,开始阶段出现激烈的沸腾,温度降低至λ点以下时,HeⅠ转变为HeⅡ,沸腾突然停止,液面平静如镜,汽化只发生在液面。正常流体的导热率与温度梯度无关,纯粹是反映物质性质的量,但HeⅡ的导热率却与温度梯度甚至容器的几何形状有关。 

热效应

  热效应包括机-热和热-机两种效应。盛有液氦的两个容器用极细的毛细管C连通,注入液氦,温度低于λ点,右侧液面高于左侧,形成压强差Δp.液氦中低熵超流成分能从右侧通过毛细管转移到左侧,而高熵的正常成分不能通过毛细管。这导致右侧液氦的熵增加,左侧的熵减少,这意味着右侧温度升高而左侧温度降低。这种由机械力引起的热量迁移称为机-热效应。机-热效应的逆过程称为热-机效应。右侧液氦受热后(吸热Q),低熵的超流成分减少,左侧液氦中的超流成分通过毛细管流向右侧,而正常成分不能通过毛细管,这导致右侧液面升高形成压强差。热-机效应的“喷泉”装置。带毛细管喷嘴的无底玻璃管的填充金刚砂粉末P,用棉花C塞住底部,浸入液氦中。用光照射玻璃管,使管内的液氦温度升高,超流成分激发成正常成分。管外的超流成分通过棉花塞向管内转移,形成内外压强差,液氦从喷嘴喷出。 

第二声波

  普通流体中的声波是由密度交替变化形成的,称密度波。1941年朗道发展了量子液体的流体动力学,预言在HeⅡ中除普通密度波(称第一声波)外,还存在另一种声波,它是由液氦中超流成分(低熵,温度较低)与正常流体成分(高熵,温度较高)的相对运动形成的,称为温度波或熵波(第二声波)。实验证实了温度波的存在。 

同位素

  3He是4He的同位素,在天然氦中所占比例小于10-7,通过人工核反应可得足够数量的3He.3He的临界温度和临界压强分别为3.34K和1.17大气压。与4He一样,在常压下液态3He不会固化,在绝对零度附近需加34个大气压才能固化。1972年,D.D.奥舍罗夫等人在2mK低温下发现了两个3He的液态新相,分别称为3He-A和3He-B,它们均为超流态。液态3He和4He在0.87K以上温度时完全互溶,在该温度以下则分离成两相,按3He所占比例的多少分别称为浓相(含3He较多)和稀相(含3He较少),浓相浮于稀相之上(因3He比4He轻)。3He原子从浓相通过界面进入稀相时要吸热,这就是稀释致冷机的工作原理(见超低温技术)。3He原子的电子总自旋为零,核自旋为1/2,故与电子一样属费米子,遵守费米-狄拉克统计,液态3He称为费米液体,正常态的液态3He的性质可用朗道的费米液体理论描述。 

用途

  氦是最不活泼的元素,几乎不能和其他任何元素化合,而且极难液化。氦的应用主要是作为保护气体、气冷式核反应堆的工作流体和超低温冷冻剂等等。氦气在卫星飞船发射、导弹武器工业、低温超导研究、半导体生产等方面具有重要用途。 

   

   液氦

氦气曾被用来当做热气球和飞艇的驱动力

气球和飞艇

  氦气曾被用来当做热气球和飞艇的驱动力,氦气的密度要比空气小得多,所以如果往气球和飞艇里充入氦气,气球和飞艇会冉冉升起,让我们不用坐飞机也能实现飞到空中的梦想。因为氢气和空气混合后会爆炸,所以氢气球和氢气飞艇并不安全。氢气飞艇曾经被当做大型载人飞行器使用,但是在1937年德国的“兴登堡号”飞艇在美国着陆时不慎着火爆炸之后,它就彻底退出了历史舞台。不过,热气球和热气飞艇还是比较安全的,而且飞行一次的花费也比较便宜。 

人造空气

  潜水员常常要使用氦气和氧气混合而成的人造空气。这是因为在水下的高压环境下,氮气会溶解在血液中,当潜水员上浮的时候压力减小,血中的氮气便纷纷逸出,形成气泡堵塞血管,使潜水员患上极为难受的“减压症”。氦气在高压下也难溶于水,所以用它来代替氮气就可以解决这个问题。不过如果我们没有氦气,我们还可以用氖气—它在高压下也难溶于水。 

保护气

  氦气在电焊、硅晶片生产中还可以用做保护气,它可以隔绝氧气,避免电焊工件、单质硅和氧气发生讨厌的化学反应。据美国政府有关部门统计,2000年美国消耗的所有氦气中,有18%用在了焊接上,还有16%用作其他工业的保护气。不过如果没有氦气,氩气一样可以出色地完成服务,而且还便宜得多。 

低温超导技术

  要说缺乏氦气最严重的后果,也无非是严重阻碍低温技术的应用,其中受到最大影响的就是低温超导技术了。现在已知所有的超导材料都要在-130°C以下的低温中才能表现出超导特性,其中应用最广泛的那几种(比如Nb3Sn)更是需要比液氢的沸点还低的转变温度,这时候只有液氦能比较简便地实现这样的极低温。虽然我们完全可以用别的办法实现同样的低温,但都不如液氦实惠。显然,假如我们没有氦,低温超导技术的普及就会受到严重的阻碍;低温超导技术如果不能普及,医院就会用不起核磁共振成像仪(它需要超导材料制造强磁场)。 

资源分布

来源分布

   

   液氦

氦液化器

氦气最主要的来源不是空气,而是天然气。原来氦气在干燥空气中含量极微,平均只有百万分之五,天然气中最高则可含7.5%的氦,是空气的一万五千倍。可是这种高氦的天然气矿藏并不多,因为天然气中的氦气是铀之类的放射性元素衰变的产物。只有在天然气矿附近有铀矿时,氦气才能在天然气中汇集。 

  即使是氦气含量很低的天然气,也比空气中氦气含量高数万倍,因此仍是目前世界上氦气的主要来源。其中,美国氦气资源占50%以上,我国仅占0.2%。 

  天然气中的氦气是铀之类的放射性元素衰变的产物。只有在天然气矿附近有铀矿时,氦气才能在天然气中汇集。美国生产的氦气要占世界总产量的80%以上。 

  中国虽然也有一定的天然气资源,可是到目前为止,唯有四川自贡威远的气田曾得到提氦利用,其中的氦含量只有0.2%,而且现在已经枯竭。 

  我国近年来对氦气的需求量越来越大。受制于氦气资源匮乏、提取氦气的成本较高,我国在需求上一直依赖进口。 

  2007年,美国将氦气核定为战略物资而限制粗氦产量,导致全球液氦价格由原来60~80元/每升,上涨到目前200元/每升以上。这也就是说,假如你呼出的气都是氦气,那么在安静状态下你呼出的每一口气都值100元! 

  昂贵的液氦价格,使研究工作难以广泛开展。专家预计,未来氦气进口将更加受制于人,届时可能会因为无液氦供应而使我国现有的许多涉及氦气和液氦的科研项目无法实施。 

三种途径解除氦危机

  最直接的办法就是节流。现在医院的核磁共振仪很多自身带有密闭性很好、防止蒸发的液氦装置,大大减少了液氦的需求量,先前的一些耗费液氦量大的仪器已经逐渐被淘汰。 

  更多的科学家尝试用其他的制冷方式来代替液氦制冷。比如用无液氦的制冷机来达到超导磁体的工作温度。相对于液氦制冷,制冷机的氦需求量很低(用作制冷机的制冷气体),制冷机主要通过冷桥与磁体相连,采用的是热传导的制冷方式,而液氦主要是将磁体浸泡其中,对流制冷起很大作用。然而这种方法目前还没有真正用于医用核磁共振仪。有专家表示,液氦制冷的优势现在比较明显:制冷效果稳定,对于成像要求条件苛刻的医用设备,这点很重要。制冷机的稳定性不如液氦,容易受到扰动影响,这对精确成像是不利的。但他也表示,随着技术的进一步发展、成熟,制冷机代替液氦制冷也并非不可能。 

  发展高温超导材料也是另一个可能的途径。2009年10月18日在合肥举行的国际磁体技术会议上,高温超导成为与会专家的热议话题。寻找优质的高温超导材料,让超导磁体能够在液氮甚至更高的温度下稳定工作,是核磁共振成像仪摆脱液氦的又一希望所在。 

小型氦液化装置

  氦液化器,只能液化气态氦,不能凭空制造出氦。 

  2010年我国采用五台G-M制冷机做冷源,成功研制出世界首台70升/天的4.2K G-M制冷机做冷源的小型氦液化器,其氦液化率达到73升/天(4.21K)、87升/天(4.5K)。经过对装置的真空绝热、输液管结构和运行参数的进一步优化,该装置近日运行测试,成功获得了95升/天(4.2K)、105升/天(4.5K)的氦液化率,这一指标达到了采用小型低温制冷机做冷源的同类小型氦液化装置的世界最好水平。 

  该小型氦液化装置可完成氦气室温回收和液化,在确保磁体电流引线不受影响的同时,实现液氦的零加注,使重离子加速器的离子源在节约氦的同时可连续不间断运行,保证了大科学装置的运行时间。该技术还可应用于科研院所低温科学仪器的氦气回收和液化,有效降低科研成本;也可在医院的超导核磁谱仪中应用,降低医疗费用。 

研究历史

  在上世纪初的几十年里,世界各国都在寻找氦气资源,在当时主要是为了充飞艇。但是到了今天,氦不仅用在飞行上,尖端科学研究,现代化工业技术,都离不开氦,而且用的常常是液态的氦,而不是气态的氦。液态氦把人们引到一个新的领域——低温世界。 

  在液态空气的温度下,氦和氖仍然是气体;在液态氢的温度下,氖变成了固体,可是氦仍然是气体。 

  要冷到什么程度,氦才会变成液体呢? 

  英国物理学家杜瓦在1898年首先得到了液态氢。就在同一年,荷兰的物理学家卡美林·奥涅斯也得到了液态氢。液态氢的沸点是零下253℃,在这样低的温度下,其他各种气体不仅变成液体,而且都变成了固体。只有氦是最后一个不肯变成液体的气体。卡美林·奥涅斯决心把氦气也变成液体。 

  1908年7月,卡美林·奥涅斯成功了,氦气变成了液体。他第一次得到了320立方厘米的液态氦。 

  要得到液态氢,必须先把氢气压缩并且冷却到液态空气的温度,然后让它膨胀,使温度进一步下降,氢气就变成了液体。 

  要得到液态氦,必须先把氦气压缩并且冷却到液态氢的温度,然后让它膨胀,使温度进一步下降,氦气才能变成液体。 

  液态氦是透明的容易流动的液体,就像打开了瓶塞的汽水一样,不断飞溅着小气泡。 

  液态氦是一种与众不同的液体,它在零下269℃就沸腾了。在这样低的温度下,氢也变成了固体,千万不要使液态氦和空气接触,因为空气会立刻在液态氦的表面上冻结成一层坚硬的盖子。 

  多少年来,全世界只有荷兰卡美林·奥涅斯的实验室能制造液态氦。直到1934年,在英国卢瑟福那里学习的前苏联科学家卡比查发明了新型的液氦机,每小时可以制造4升液态氦。以后,液态氦才在各国的实验室中得到广泛的研究和应用。 

  在今天,液态氦在现代技术上得到了重要的应用。例如要接收宇宙飞船发来的传真照片或接收卫星转播的电视信号,就必须用液态氦。接收天线末端的参量放大器要保持在液氦的低温下,否则就不能收到图像。 

  然而,液态氦的奇妙之处还不在于低温。 

  卡美林·奥涅斯是第一个得到液氦的科学家。他并不满足,还想使温度进一步降低,以得到固态氦。他没有成功(固态氦是1926年基索姆用降低温度和增大压力的方法首先得到的),却得到了一个没有预料到的结果。 

  对于一般液体来说,随着温度降低,密度会逐渐增加。卡美林·奥涅斯使液态氦的温度下降,果然,液氦的密度增大了。但是,当温度下降到零下271℃的时候,怪事出现了,液态氦突然停止起泡,变成像水晶一样的透明,一动也不动,好像一潭死水,而密度突然又减小了。 

  这是另一种液态氦。卡美林·奥涅斯把前一种冒泡的液态氦叫做氦Ⅰ,而把后一种静止的液态氦做氦Ⅱ。 

  把一个小玻璃杯按在氦Ⅱ中。玻璃杯本是空的,但是过了一会,杯底出现了液态氦,慢慢地涨到跟杯子外面的液态氦一样平为止。 

  把这个盛着液态氦的小玻璃杯提出来,挂在半空。看,玻璃杯底下出现了液氦,一滴,两滴,三滴……不一会,杯中的液态氦就“漏”光了。是玻璃杯漏了吗?不,玻璃杯一点也不漏。这是怎么回事呢? 

  原来氦Ⅱ是能够倒流的,它会沿着玻璃杯的壁爬进去又爬出来。这是在我们日常生活中没有碰到过的现象,只有在低温世界才会发生。这种现象叫做“超流动性”,具有“超流动性”的氦Ⅱ叫做超流体。 

  后来,许多科学家研究了这种怪现象,又有了许多新的发现。其中最有趣的是1938年阿兰等人发现的氦刀喷泉。 

  在一根玻璃管里,装着很细的金刚砂,上端接出来一根细的喷嘴。将这玻璃管浸到氦Ⅱ中,用光照玻璃管粗的下部,细喷嘴就会喷出氦Ⅱ的喷泉,光越强喷得越高,可以高达数厘米。 

  氦Ⅱ喷泉也是超流体的特殊性质。在这个实验中,光能直接变成了机械能。 

  大家还记得拉姆赛把各种物质放到液态空气中的各种奇妙的实验吧!各种物质放在液态氦里,情况就更奇妙了。 

  看!在液氦的温度下,一个铅环,环上有一个铅球。铅球好像失去了重量,会飘浮在环上,与环保持一定距离。 

  再看!在液氦的温度下,一个金属盘子,把细链子系着磁铁,慢慢放到盘子里去。当磁铁快要碰到盘子的时候,链子松了,磁铁浮在盘子上,怎样也不肯落下去。 

  真像是到了魔术世界!这一切,只能在液态氦的温度下发生。温度一升高,魔术就不灵了,铅球落在铅环上,磁铁也落在金属盘子里了。 

  这是低温下的超导现象。 

  原来,有些金属,在液态氦的温度下,电阻会消失;在金属环和金属盘中,电流会不停地流动而产生磁场。这时候,磁场的斥力托住了铅球和磁铁,使它们浮在半空中。 

  在低温下,出现了许多奇妙的物理现象。许多重要的物理实验,都要在低温下进行。 

  目前,世界各国的物理学家还在研究液态氦,希望通过液态氦达到更低的温度,研究各种物质在低温下会发生什么奇妙的变化,会有什么我们目前还不知道的性质。这就产生了物理学的一个新的分支——低温物理学。 

  氦,这个奇妙的物质,一直在引起科学家们的注意。科学家们继续研究氦,通过科学实验,不断地为氦写下一页又一页新的历史。 

  物理学家不仅仅得到了液态氦,还得到了固态氦,他们正在向绝对零度进军(物理学把零下273.15℃叫做绝对零度。这个温度标叫做绝对温标,用K表示。0K就是-273.15℃,而273.15K就是0℃)。从理论上讲,绝对零度是达不到的,但是可以不断接近它。液态氢的沸点是绝对温标20.2℃,液态氦的沸点是绝对温标4.2℃。在绝对温标2.19℃的时候,氦Ⅰ变为氦Ⅱ。1935年,利用“绝热去磁”法,使液态氦冷到绝对温标0.0034℃;1957年,达到绝对温标0.00002℃;目前已达到跟绝对零度只相差0.000001℃了。 

  天文学家也继续研究着太阳元素。太阳上的氢“燃烧”变成了氦,以后的命运又如何呢?他们发现宇宙间有一些比太阳更炽热的恒星,中心温度达到几亿度。在这些恒星的核心,氢原子核已经都变成了氦原子核,氦原子核又相互碰撞,正在生成着碳原子核和氧原子核,同时放出大量的能。这类恒星橡心脏一样,一会儿膨胀,一会儿收缩,很有规律。为什么会这样?这也是因为氦在起作用。 

  天文学家还研究了银河系内氢的含量和氦的含量的比值。根据这个比值,有人估算了银河系的年龄有一二百亿年。 

  氦的历史并没有完,人类认识氦的历史也没有完,而我们这本讲氦的故事的小册子,却不得不结束了。 

  要问在发现氦和研究氦的历史上谁的功劳最大呢?是天文学家詹森和罗克耶吗?是化学家拉姆赛和物理学家克鲁克斯吗?是发明分光镜的本生与基尔霍夫吗?当然还要考虑把空气、氢气以及氦气液化的汉普松、卡美林·奥涅斯等人的功劳。 

  很难说。在人类认识氦的历史上,他们都有着自己的贡献。氦仅仅是一种元素,但是发现它和认识它,是许多门科学——物理学、天文学、化学、地质学等的共同胜利,决不是某一个人的力量能够完成的。 

  科学是没有平坦的道路可走的,只有不畏艰险不怕困难的人才能攀登科学的高峰。通过氦的发现的历史,我们看到许多科学家们正是这样勇于实践的人。他们有严谨的科学态度,对于实验中的一点细微现象——一个小气泡,第三位小数的细微差异,也不放过。他们不但爱问为什么,而且千方百计地去寻找答案。他们埋头苦干,几个月、一年、几年坚持不懈,终于由纷乱的谜团中找出头绪,得到了解答。他们永远不满足已有的成绩,而是深入一步、再深入一步地钻研。人们对氦的认识就是这样逐步深入的。到现在为止,谁也不敢这样说:“氦,我们已经完全认识清楚了。”可能在未来的十年,我们就能完全的为人类所用!!

河南迎众化工产品有限公司,专营 高纯气体 混合气体 液态气体 食品级二氧化碳 标准气体 等业务,有意向的客户请咨询我们,联系电话:13523575985

CopyRight © 版权所有: 河南迎众化工产品有限公司 网站地图 XML

本站关键字: 河南高纯氦厂家 河南标准气体 山西高纯氮 食品级二氧化碳


扫一扫访问移动端